home *** CD-ROM | disk | FTP | other *** search
Text File | 1994-03-13 | 12.1 KB | 1,047 lines |
-
- ùwarning
- ûtrace
- îB=1,
- C=2,
- D=3,
- E=4,
- F=5,
- G=6,
- H=7,
- I=8,
- J=9,
- K=10,
- L=11,
- M=12,
- N=13,
- O=18,
- P=21
- ïQ(¡R)
- ç(R>=-3ÄR<=19)Å(R>=256ÄR<=261)
- éï
- ïR(¡S)
- çS>=0ÄS<=255
- éï
- ïS(¡T)
- çT=0ÅT=1
- éï
- ïT(¡U)
- çU>=1
- éï
- ïU(«V)
- ç½(V)=2
- éï
- ïV(«W)
- ç½(W)>=2
- éï
- ÆäW(R X,V Y)
- ╨(C,{X,0,Y})
- éä
- ÆäX(R Y,
- S Z,
- V a)
- ╨(L,{Y,Z,a})
- éä
- ÆäY(R Z,S a,U b,U c)
- ╨(O,{Z,a,b,c})
- éä
- ÆäZ(R a,U b)
- ╨(E,{a,b})
- éä
- Ææc(U a)
- ç╧(P,a)
- éæ
- Ææb(Q a)
- ç╧(F,a)
- éæ
- Æîa=1,
- d=2,
- e=3,
- f=4,
- g=5,
- h=6,
- i=7
- Ææj()
- ç╧(N,0)
- éæ
- Æîk=8192,
- l=1543,
- m=7,
- n=1031
- Æäo(¡p)
- ╨(G,p)
- éä
- Ææp(T q)
- ç╧(M,q)
- éæ
- Æäq(S r)
- ╨(H,r)
- éä
- Æär(¡s)
- ╨(I,s)
- éä
- Æäs(R t)
- ╨(J,t)
- éä
- Æät(R u)
- ╨(K,u)
- éä
- ïu(«v)
- ç½(v)=3
- éï
- Ææv(R w,u x)
- ç╧(D,{w,x})
- éæ
- ïw(¡x)
- çx>=0
- éï
- Æäx(w y)
- ╨(B,y)
- éä
- Æîy=0,
- z=-1,
- BA=1
- îBB=-2
- îBC=1
- ïBD(¡BE)
- çBE>=0
- éï
- ïBE(¡BF)
- çBF>=BBÄBF<=255
- éï
- BD BF
- BE BG
- BG=BB
- æBH()
- BE BI
- üBG=BBâ
- ç╖(BF)
- à
- BI=BG
- BG=BB
- çBI
- éü
- éæ
- äBI(BE BJ)
- BG=BJ
- éä
- äBJ()
- BE BK
- èBCê
- BK=BH()
- üö╛(BK,{
- 32,9,10})â
- É
- éü
- éè
- BI(BK)
- éä
- îBK={
- 110,116,39,34,92,114},
- BL={
- 10,9,39,34,92,13}
- æBM(BE BN)
- BD BO
- BO=╛(BN,BK)
- üBO=0â
- çBA
- à
- çBL[BO]
- éü
- éæ
- æBN()
- BE BO
- BO=BH()
- üBO=92â
- BO=BM(BH())
- üBO=BAâ
- ç{BA,0}
- éü
- éü
- üBH()!=39â
- ç{BA,0}
- à
- ç{y,BO}
- éü
- éæ
- æBO()
- «BP
- BE BQ
- BP={}
- èBCê
- BQ=BH()
- üBQ=zÅBQ=10â
- ç{BA,0}
- éü
- üBQ=34â
- É
- ëBQ=92â
- BQ=BM(BH())
- üBQ=BAâ
- ç{BA,0}
- éü
- éü
- BP=BP&BQ
- éè
- ç{y,BP}
- éæ
- ïBP(¡BQ)
- çBQ=-1ÅBQ=+1
- éï
- æBQ()
- BE BR
- BP BS,BT
- BD BU
- ¡BV
- ╝BW,BX,BY,BZ
- BS=+1
- BW=0
- BT=+1
- BY=0
- BU=0
- BR=BH()
- üBR=45â
- BS=-1
- ëBR !=43â
- BI(BR)
- éü
- BR=BH()
- üBR=35â
- èBCê
- BR=BH()
- BV=╛(BR,{
- 48,49,50,51,52,53,54,55,56,57,65,66,67,68,69,70})-1
- üBV>=0â
- BU=BU+1
- BW=BW*16+BV
- à
- BI(BR)
- üBU>0â
- ç{y,BS*BW}
- à
- ç{BA,0}
- éü
- éü
- éè
- éü
- è╛(BR,{
- 48,49,50,51,52,53,54,55,56,57})ê
- BU=BU+1
- BW=BW*10+(BR-48)
- BR=BH()
- éè
- üBR=46â
- BR=BH()
- BX=10
- è╛(BR,{
- 48,49,50,51,52,53,54,55,56,57})ê
- BU=BU+1
- BW=BW+(BR-48)/BX
- BX=BX*10
- BR=BH()
- éè
- éü
- üBU=0â
- ç{BA,0}
- éü
- üBR=101ÅBR=69â
- BR=BH()
- üBR=45â
- BT=-1
- ëBR !=43â
- BI(BR)
- éü
- BR=BH()
- ü╛(BR,{
- 48,49,50,51,52,53,54,55,56,57})â
- BY=BR-48
- BR=BH()
- è╛(BR,{
- 48,49,50,51,52,53,54,55,56,57})ê
- BY=BY*10+BR-48
- BR=BH()
- éè
- BI(BR)
- à
- ç{BA,0}
- éü
- à
- BI(BR)
- éü
- BZ=1
- üBT>=0â
- åBa=1ìBYê
- BZ=BZ*10
- éå
- à
- åBa=1ìBYê
- BZ=BZ*0.1
- éå
- éü
- ç{y,BS*BW*BZ}
- éæ
- æBR()
- BE BS
- «BT,BU
- BJ()
- BS=BH()
- ü╛(BS,{
- 45,43,46,48,49,50,51,52,53,54,55,56,57,35})â
- BI(BS)
- çBQ()
- ëBS=123â
- BT={}
- èBCê
- BJ()
- BS=BH()
- üBS=125â
- ç{y,BT}
- à
- BI(BS)
- éü
- BU=BR()
- üBU[1]!=yâ
- çBU
- éü
- BT=▒(BT,BU[2])
- BJ()
- BS=BH()
- üBS=125â
- ç{y,BT}
- ëBS !=44â
- ç{BA,0}
- éü
- éè
- ëBS=34â
- çBO()
- ëBS=39â
- çBN()
- ëBS=-1â
- ç{z,0}
- à
- ç{BA,0}
- éü
- éæ
- ÆæBV(BD BW)
- BF=BW
- çBR()
- éæ
- îBX=16,
- BY=17
- îBZ=╬(2,32)-1
- ïBa(╝BS)
- çBS>0ÄBS<=BZÄ╢(BS)=BS
- éï
- ÆæBT(¡BU)
- ç╧(BX,BU)
- éæ
- ÆäBW(Ba BS)
- ╨(BY,BS)
- éä
- ÆæBU(╝BS)
- «Bb
- Bb={0,0,0,0}
- Bb[1]=═(BS,#100)
- BS=╢(BS/#100)
- Bb[2]=═(BS,#100)
- BS=╢(BS/#100)
- Bb[3]=═(BS,#100)
- BS=╢(BS/#100)
- Bb[4]=═(BS,#100)
- çBb
- éæ
- ÆæBS(«Bb)
- çBb[1]+
- Bb[2]*#100+
- Bb[3]*#10000+
- Bb[4]*#1000000
- éæ
- æBb(¡Bc,¡Bd)
- «Be
- Be={}
- èBdê
- Be=▒(Be,╖(Bc))
- Bd=Bd-1
- éè
- çBe
- éæ
- æBc(¡Bd)
- «Be
- Be={╖(Bd)}
- ü(Be[1]=-1)âç{}éü
- Be=▒(Be,Bb(Bd,14))
- Be=▒(Be,Bb(Bd,3))
- Be=▒(Be,BS(Bb(Bd,4)))
- Be=▒(Be,BS(Bb(Bd,4)))
- åBf=1ì5ê
- Be=▒(Be,╖(Bd))
- éå
- çBe
- éæ
- îBd={-1,{92},{100},0,1981,1,1,0,0,0}
- ÆæBe(¡Bf)
- «Bg,Bh
- Bg={Bd}
- Bh=Bc(Bf)
- è½(Bh)ê
- Bg=▒(Bg,Bh)
- Bh=Bc(Bf)
- éè
- çBg
- éæ
- îBf=1,Bg=2,Bh=3
- ¡Bi
- Bi=0
- «Bj
- Bj={}
- «Bk
- Bk={}
- ÆæBl()
- ¡Bm
- üBi<1â
- ç{}
- ëBi>½(Bj)â
- ç{}
- à
- Bm=Bi
- Bi=Bm+1
- çBj[Bm]
- éü
- éæ
- ÆäBm()
- üBi>1â
- Bi=Bi-1
- éü
- éä
- ÆæBn(¡Bo)
- üBo<1ÅBo>½(Bj)â
- ┤(2,{
- 115,101,101,107,95,114,101,99,111,114,100,58,32,105,110,118,97,108,105,100,
- 32,114,101,99,111,114,100,32,110,117,109,98,101,114,32,37,100,10},{Bo})
- ç-1
- éü
- Bi=Bo
- çBo
- éæ
- ÆæBo()
- çBi
- éæ
- äBp(¡Bq,«Br)
- «Bs
- «Bt
- ¡Bu
- Bu=Bo()
- Bt=Bl()
- è½(Bt)ê
- üBt[Bf]<Bqâ
- Bm()
- É
- ëBt[Bf]=Bqâ
- ü╛(100,Bt[Bh])â
- Br[3]=▒(Br[3],{Bt[Bg],Bu})
- Bs={Bt[Bg],Bu,{}}
- Bp(Bq+1,Bs)
- éü
- à
- ¼(2,{
- 73,110,118,97,108,105,100,32,102,105,108,101,32,115,116,114,117,99,116,117,
- 114,101,46,32,71,105,118,105,110,103,32,117,112,46})
- ╤(1)
- éü
- Bu=Bo()
- Bt=Bl()
- éè
- Bk=▓(Bk,Br)
- éä
- äBq()
- «Br
- «Bs
- åBt=1ì½(Bk)ê
- Br=Bk[Bt]
- ┤(1,{
- 37,115,32,37,100,10},Br[1..2])
- Bs=Br[3]
- åBu=1ì½(Bs)ê
- ┤(1,{
- 32,32,32,32,37,115,32,37,100,10},Bs[Bu])
- éå
- éå
- éä
- ÆäBr(¡Bs)
- ¡Bt
- Bj=Be(Bs)
- Bk={}
- Bt=Bn(2)
- Bp(0,{{
- 92},1,{}})
- Bt=Bn(1)
- éä
- ÆæBu(«Bs,¡Bt)
- åBv=1ì½(Bk)ê
- ü┐(Bs,Bk[Bv][1])ÄBt=Bk[Bv][2]â
- çBv
- éü
- éå
- ç0
- éæ
- ÆæBs(«Bt,¡Bv)
- «Bw
- Bw=Bk[Bv][3]
- åBx=1ì½(Bw)ê
- ü┐(Bt,Bw[Bx][1])â
- çBw[Bx][2]
- éü
- éå
- ç0
- éæ
- ÆæBt(¡Bv)
- çBk[Bv][2]
- éæ
- ÆäBw(¡Bx)
- ¡Bv
- ç
- ┤(1,{
- 37,100,32,37,115,32,37,115,32,37,100,32,37,100,32,37,100,32,37,100,
- 32,37,100,32,37,100,32,37,100,10},Bj[Bx])
- Bv=╖(0)
- éä
- ÆäBx(¡Bv)
- ¡By
- ç
- ┤(1,{
- 37,115,32,37,100,10},Bk[Bv][1..2])
- By=╖(0)
- éä
- ûtrace
- ïBv(¡By)
- çBy>0
- éï
- Bv By
- «Bz
- ÆäCA()
- ¡CB
- By=Bu({
- 92},1)
- Bz={{{
- 92},By}}
- CB=Bn(1)
- éä
- ÆæCB(«CC)
- ¡CD
- ¡CE
- CD=Bs(CC,By)
- üCD<1â
- ç0
- éü
- By=Bu(CC,CD)
- Bz=▒(Bz,{CC,By})
- CE=Bn(CD)
- ç1
- éæ
- ÆæCC()
- ¡CD
- ¡CE
- CD=½(Bz)
- üCD<=1â
- ç0
- éü
- Bz=Bz[1..CD-1]
- By=Bz[CD-1][2]
- CE=Bt(By)
- CD=Bn(CE)
- ç1
- éæ
- ÆäCD()
- ¼(1,Bz[1][1])
- åCE=2ì½(Bz)ê
- ¼(1,Bz[CE][1])
- ¼(1,{
- 92})
- éå
- éä
- ûtrace
- îCE=1,CF=2,CG=3,CH=4
- îCI=5,CJ=6,CK=7
- îCL=8,CM=9,CN=10
- îCO=14,CP=7,CQ=2
- îCR=16,CS=80,CT=25,CU=23
- îCV=4,CW=1
- ¡CX,CY,CZ,Ca
- CX=CV
- CY=CW
- Ca=0
- CZ=1
- äCb()
- è╣()<0ê
- éè
- éä
- ÆäCc(«Cd)
- »(CT,CW)
- s(CQ)
- ü½(Cd)â
- ¼(1,Cd)
- à
- ¼(1,{
- 80,114,101,115,115,32,97,110,121,32,107,101,121,32,116,111,32,99,111,110,
- 116,105,110,117,101,46,46,46})
- éü
- Cb()
- s(CP)
- »(CT,CW)
- ¼(1,{
- 32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,
- 32,32,32,32,32,32,32,32})
- CZ=CZ+1
- éä
- äCd(«Ce)
- üCY>CSâ
- CY=CW
- CX=CX+1
- üCX=CTâ
- Cc({})
- ╡()
- CX=CV
- éü
- éü
- »(CX,CY)
- ¼(1,Ce)
- CY=CY+CR
- éä
- äCe()
- üCX=CTÄCa>=CUâ
- üCZâ
- r(1)
- CZ=CZ+1
- éü
- Cc({})
- Ca=0
- CX=CT-1
- éü
- CY=1
- üCX=CTâ
- r(1)
- à
- CX=CX+1
- éü
- »(CX,CY)
- Ca=Ca+1
- éä
- æCf()
- üCY>CSÄCX+1=CTâ
- ç1
- à
- ç0
- éü
- éæ
- ÆäCg(¡Ch)
- ¡Ci
- «Cj
- ¡Ck
- ¡Cl
- Cl=Bo()
- CX=CV
- CY=CW
- CZ=1
- s(CP)
- Cj=Bl()
- Ci=Cj[CE]+1
- Cj=Bl()
- è½(Cj)ê
- üCj[CE]<Ciâ
- Ck=Bn(Cl)
- üCZ>1â
- Cc({})
- éü
- ç
- éü
- üCj[CE]=Ciâ
- ü╛(100,Cj[CG])â
- s(CO)
- éü
- üCf()ÄChâ
- »(CT,CW)
- s(CQ)
- ¼(1,{
- 85,115,101,32,76,73,83,84,32,116,111,32,118,105,101,119,32,97,108,108,
- 32,102,105,108,101,115,46,46,46})
- s(CP)
- Ck=Bn(Cl)
- ç
- éü
- Cd(Cj[CF])
- s(CP)
- éü
- Cj=Bl()
- éè
- Ck=Bn(Cl)
- üCZ>1â
- Cc({})
- éü
- éä
- ÆäCh(¡Ci)
- ¡Cj
- «Ck
- ¡Cl
- ¡Cm
- CZ=0
- Ca=0
- CX=0
- CY=1
- ╡()
- Cm=Bo()
- s(CP)
- Ck=Bl()
- Cj=Ck[CE]+1
- Ck=Bl()
- è½(Ck)ê
- üCk[CE]<Cjâ
- Cl=Bn(Cm)
- r(1)
- Cc({})
- ç
- éü
- üCk[CE]>=Cjâ
- ü╛(100,Ck[CG])â
- Ce()
- ┤(1,{
- 37,115},{╗(32,4*Ck[CE])})
- ┤(1,{
- 37,115},{Ck[CF]})
- éü
- éü
- Ck=Bl()
- éè
- Cl=Bn(Cm)
- r(1)
- Cc({})
- éä
- îCi={48,49,50,51,52,53,54,55,56,57}
- æCj(¡Ck)
- «Cl
- üCk=0â
- ç{48}
- éü
- Cl={}
- èCk>0ê
- Cl=▓(Cl,Ci[═(Ck,10)+1])
- Ck=╢(Ck/10)
- éè
- çCl
- éæ
- ÆäCm(«Ck)
- ¡Cl
- «Cn
- ¡Co,Cp,Cq
- ¡Cr
- Ca=0
- CX=0
- CY=1
- Cp=0
- Cq=0
- ╡()
- Cr=Bo()
- s(CP)
- Cn=Bl()
- Cl=Cn[CE]+1
- Cn=Bl()
- è½(Cn)ê
- üCn[CE]<Clâ
- Co=Bn(Cr)
- r(1)
- Cc({
- 70,105,108,101,115,32,102,111,117,110,100,58,32}&Cj(Cp)&{
- 32,84,111,116,97,108,32,115,105,122,101,58,32}&Cj(Cq))
- ç
- éü
- üCn[CE]>=Clâ
- ü┐(Ck,Cn[CF])â
- Cp=Cp+1
- Cq=Cq+Cn[CH]
- Ce()
- ┤(1,{
- 37,45,49,52,115,32,37,45,51,115,32,37,55,100,32,37,52,100,47,37,
- 48,50,100,47,37,48,50,100,32,37,48,50,100,58,37,48,50,100,58,37,
- 48,50,100},
- Cn[CF..CN])
- éü
- éü
- Cn=Bl()
- éè
- Co=Bn(Cr)
- r(1)
- Cc({
- 70,105,108,101,115,32,102,111,117,110,100,58,32}&Cj(Cp)&{
- 32,84,111,116,97,108,32,115,105,122,101,58,32}&Cj(Cq))
- éä
- ÆäCk()
- ╡()
- ¼(1,{
- 10})
- ¼(1,{
- 10})
- ¼(1,{
- 10})
- ¼(1,{
- 67,111,112,121,114,105,103,104,116,32,49,57,57,52,32,98,121,32,66,114,
- 117,99,101,32,87,46,32,69,118,97,110,115,46,32,65,108,108,32,114,105,
- 103,104,116,115,32,114,101,115,101,114,118,101,100,46,10})
- ¼(1,{
- 10})
- ¼(1,{
- 76,105,99,101,110,115,101,32,105,115,32,103,114,97,110,116,101,100,32,102,
- 111,114,32,110,111,110,45,99,111,109,109,101,114,99,105,97,108,32,117,115,
- 101,32,98,121,32,105,110,100,105,118,105,100,117,97,108,115,32,97,110,100,
- 32,110,111,110,45,112,114,111,102,105,116,10})
- ¼(1,{
- 111,114,103,97,105,110,105,122,97,116,105,111,110,115,46,10})
- ¼(1,{
- 10})
- ¼(1,{
- 84,104,105,115,32,112,114,111,103,114,97,109,32,109,97,121,32,98,101,32,
- 102,114,101,101,108,121,32,99,111,112,105,101,100,32,97,110,100,32,100,105,
- 115,116,114,105,98,117,116,101,100,44,32,115,111,32,108,111,110,103,32,97,
- 115,32,116,104,101,114,101,32,105,115,10})
- ¼(1,{
- 110,111,32,99,104,97,114,103,101,32,111,116,104,101,114,32,116,104,97,110,
- 32,102,111,114,32,116,104,101,32,99,111,115,116,32,111,102,32,100,105,115,
- 116,114,105,98,117,116,105,111,110,46,10})
- ¼(1,{
- 10})
- ¼(1,{
- 65,32,112,114,111,100,117,99,116,32,111,102,58,10})
- ¼(1,{
- 66,82,69,86,32,69,110,116,101,114,112,114,105,115,101,115,10})
- ¼(1,{
- 49,49,53,57,69,32,80,97,99,105,102,105,99,32,67,111,97,115,116,32,
- 72,119,121,46,44,32,83,117,105,116,101,32,50,50,55,10})
- ¼(1,{
- 72,101,114,109,111,115,97,32,66,101,97,99,104,44,32,67,65,32,57,48,
- 50,53,52,10})
- ¼(1,{
- 67,73,83,58,32,55,54,54,49,54,44,50,49,53,10})
- ¼(1,{
- 10})
- ¼(1,{
- 10})
- ¼(1,{
- 76,111,97,100,105,110,103,32,100,97,116,97,32,98,97,115,101,46,46,46,
- 32,104,97,110,103,32,111,110,32,97,32,115,101,99,46,46,46,10})
- éä
- îCl=0,Cn=1,Co=2
- îCp=0,Cq=7,Cr=14
- îCs={32,10,13,9}
- æCt(«Cu)
- ¡Cv
- Cv=½(Cu)
- èCv>0ê
- ü╛(Cu[Cv],Cs)â
- Cv=Cv-1
- à
- É
- éü
- éè
- üCvâ
- çCu[1..Cv]
- à
- ç{}
- éü
- éæ
- æCu(«Cv)
- åCw=1ì½(Cv)ê
- üCv[Cw]>=97ÄCv[Cw]<=122â
- Cv[Cw]=65+(Cv[Cw]-97)
- éü
- éå
- çCv
- éæ
- æCv(«Cw)
- ¡Cx
- Cx=┬(Cw,{
- 114,98})
- üCx<0â
- r(1)
- »(25,1)
- ¼(Cn,{
- 70,97,105,108,101,100,32,116,111,32,111,112,101,110,32,118,105,114,116,117,
- 97,108,32,100,114,105,118,101,44,32,101,120,105,116,105,110,103,46,10})
- ╤(1)
- éü
- Br(Cx)
- çCx
- éæ
- äCw(¡Cx,«Cy,«Cz,«DA)
- ¡DB
- DB=0
- s(DA[1])
- t(DA[2])
- åDC=1ì½(Cy)ê
- üCy[DC]=126â
- s(Cz[1])
- t(Cz[2])
- DB=1
- à
- ¼(Cx,Cy[DC])
- üDBâ
- s(DA[1])
- t(DA[2])
- DB=0
- éü
- éü
- éå
- éä
- äCx()
- ╡()
- o(k)
- »(1,1)
- Cw(Cn,
- {
- 126,78,101,119,32,100,114,105,118,101,32,124,32,126,76,105,115,116,32,102,
- 105,108,101,115,32,124,32,126,68,111,119,110,32,124,32,126,85,112,32,124,
- 32,126,67,104,97,110,103,101,32,112,97,116,104,32,124,32,126,84,114,101,
- 101,32,124,32,126,70,105,110,100,32,124,32,126,81,117,105,116,10},
- {Cr,Cp},{Cq,Cp})
- »(2,1)
- ¼(1,{
- 67,117,114,114,101,110,116,32,80,97,116,104,58,32})
- CD()
- Cg(1)
- éä
- æCy()
- ¡Cz
- «DA
- »(3,1)
- ¼(Cn,{
- 69,110,116,101,114,32,110,97,109,101,32,111,102,32,118,105,114,116,117,97,
- 108,32,100,114,105,118,101,58,32})
- DA=Ct(╕(Cl))
- ╡()
- »(1,1)
- ┤(1,{
- 76,111,97,100,105,110,103,32,100,105,114,101,99,116,111,114,121,32,105,110,
- 102,111,114,109,97,116,105,111,110,32,102,111,114,32,37,115},{DA})
- Cz=Cv(DA)
- CA()
- çCz
- éæ
- äDB(¡DC)
- «Cz
- ¡DA
- »(3,1)
- ¼(1,{
- 78,101,119,32,112,97,116,104,32,110,97,109,101,58,32})
- Cz=Cu(Ct(╕(0)))
- üCz[1]=92â
- CA()
- Cz=Cz[2..½(Cz)]
- éü
- è½(Cz)ê
- DA=╛(92,Cz)
- üDA>1â
- üöCB(Cz[1..DA-1])â
- Cc({
- 68,105,114,101,99,116,111,114,121,32}&Cz[1..DA-1]&{
- 32,110,111,116,32,102,111,117,110,100,46}&
- {
- 32,40,80,114,101,115,115,32,97,32,107,101,121,41})
- ç
- éü
- Cz=Cz[DA+1..½(Cz)]
- ëDA=0â
- üöCB(Cz)â
- Cc({
- 68,105,114,101,99,116,111,114,121,32}&Cz&{
- 32,110,111,116,32,102,111,117,110,100,46}&
- {
- 32,40,80,114,101,115,115,32,97,32,107,101,121,41})
- ç
- éü
- Cz={}
- éü
- éè
- éä
- äDC()
- «Cz
- »(3,1)
- ¼(1,{
- 78,97,109,101,32,111,102,32,102,105,108,101,58,32})
- Cz=Cu(Ct(╕(0)))
- Cm(Cz)
- éä
- äDA()
- éä
- äCz()
- ¡DD
- DD=╖(Cl)
- éä
- äDD()
- «DE
- «DF
- ¡DG
- ¡DH
- ¡DI
- DE=┴()
- DG=-1
- ü½(DE)>=3â
- DF=DE[3]
- à
- ¼(Cn,{
- 69,110,116,101,114,32,110,97,109,101,32,111,102,32,118,105,114,116,117,97,
- 108,32,100,114,105,118,101,58,32})
- DF=╕(Cl)
- DF=Ct(DF)
- éü
- Ck()
- DG=Cv(DF)
- CA()
- DI=1
- è1ê
- üDIâ
- Cx()
- DI=0
- éü
- DH=╣()
- üDH>=0â
- DI=1
- üDH=110â
- o(l)
- DG=Cy()
- ëDH=108â
- Cg(0)
- ëDH=100â
- »(3,1)
- o(l)
- ¼(Cn,{
- 83,117,98,100,105,114,101,99,116,111,114,121,58,32})
- üöCB(Cu(Ct(╕(Cl))))â
- Cc({
- 83,117,98,100,105,114,101,99,116,111,114,121,32,110,111,116,32,118,97,108,
- 105,100,46,32,40,80,114,101,115,115,32,97,32,107,101,121,46,41})
- éü
- ëDH=117â
- üöCC()â
- »(4,1)
- ¼(Cn,{
- 67,97,110,110,111,116,32,103,111,32,117,112,46,32,40,80,114,101,115,115,
- 32,97,32,107,101,121,46,41})
- éü
- ëDH=99â
- o(l)
- DB(DG)
- ëDH=116â
- Ch(DG)
- ëDH=102â
- o(l)
- DC()
- ëDH=113â
- É
- à
- DA()
- DI=0
- éü
- éü
- éè
- r(1)
- »(25,1)
- éä
- DD()
-